Combinatorial and Algorithmic Game Theory Doctural Study Report Defense

Václav Blažej

blazeva1@fit.cvut.cz

Faculty of Information Technology Czech Technical University in Prague

24. June 2019

Contents

- Introduction & Theoretical background
- Our results
- Future work

Combinatorial games

- Sequential games
- Perfect information
- No randomness

Figure: Example positions in classical combinatorial games

Win condition for combinatorial games

Play type	Win condition	Loose condition	Tie condition
normal play	last to move	has no move	otherwise
misère play	has no move	last to move	otherwise

Table: Play types and their win and loose conditions

Game	First player's win condition	Second player's win condition	Tie condition
TIC-TAC-TOE	mark a row with X's	mark a row with O's	otherwise
Maker-Breaker	color a set	color a hitting set	cannot happen
Online Ramsey	force creation of a monochromatic subgraph	otherwise	cannot happen
Eternal domination	defend the graph ad infinitum	otherwise	cannot happen

Table: Games with their win condition for each player

Ultra-weak we only know the outcome, no strategy Weak outcome and strategy is shown for the initial position Strong we can compute the optimal move for any position

Work so far

- Swap pattern matching (unrelated)
 - Published in MACIS 2017
- Online Ramsey theory
 - Accepted to CSR 2019
- m-Eternal domination problem
 - Submitted to RC 2019
- Edge-length ratio of 2-trees (weakly related)
 - To be submitted

Online Ramsey number - Game rules

The online Ramsey game:

- Two players, Builder and Painter, play against each other.
- They are given a graph H and a playfield of an infinite set of independent vertices.
- Each round Builder draws an edge and Painter colors it either <u>red</u> or <u>blue</u>.

Goals of the players are:

- Builder's goal is to create a monochromatic target graph H.
- Painter's goal is to not lose for as many rounds as possible.

Online Ramsey number

Definition

The *online Ramsey number* is the minimum number of rounds such that Builder has a winning strategy in the online Ramsey game if both players play optimally.

Figure: $ORN(C_3) \le 8$.

Induced online Ramsey number

 $\mathsf{ORN}(H) \le \mathsf{ORN}_{wind}(H) \le \mathsf{ORN}_{ind}(H)$

Strongly induced constructive results:

- paths in O(n)
- cycles in O(n)
- *l*-subdivided stars S_k in $O(k^2 l)$
- l stars S_k on a common path in O(kl)

Joint work with Tomáš Valla and Pavel Dvořák.

m-Eternal domination problem - Game rules

The m-Eternal domination game:

- Two players play against each other.
- They are given a graph as a playfield.
- The first player controls a set of vertex guards.
- The second player chooses a vertex to attack each turn.
- Each turn the first player wants to move his guards such that there is a guard on the attacked vertex.

Goals of the players are:

- The first player wants to defend against the attacks forever.
- The second player wants to find a sequence of attacks which is udefendable.

m-Eternal domination problem

Definition

The *m*-eternal domination number of a graph is the lowest number of guards such that the first player wins.

Figure: Example eternal dominating strategy on a graph using 2 guards; Same colored arrows show how the guards would move at once.

m-Eternal domination problem

- upper bound for cactus graphs
- solution for christmas cactus graphs

Figure: Descision tree for chosing a proper reduction

Joint work with Jan Matyáš Křišťan and Tomáš Valla.

Edge-length ratio of 2-trees (slightly off topic)

Definition

The edge-length ratio of a graph drawing is $\frac{L}{S}$, where L is length of the longest edge and S is length of the shortest edge.

Definition

The *local edge-length ratio of a graph drawing* is the biggest ratio of lengths of two incident edges.

We showed that

- the edge-length ratio of 2-trees is unbounded,
- the local edge-length ratio of 2-trees has upper bound $(4 + \epsilon)$.

Joint work with Jiří Fiala and Giuseppe Liotta.

Summary of the results

- Online Ramsey theory
 - induced paths in O(n)
 - induced cycles in O(n)
 - induced *l*-subdivided stars S_k in $O(k^2 l)$
 - induced l stars S_k on a common path in O(kl)
- m-Eternal domination problem
 - upper bound for cactus graphs
 - solution for christmas cactus graphs
- Edge-length ratio of 2-trees
 - edge-length ratio of 2-trees is unbounded
 - local edge-length ratio of 2-trees has upper bound $(4+\epsilon)$

Summary of the results

- Online Ramsey theory
 - induced paths in O(n)
 - induced cycles in O(n)
 - induced *l*-subdivided stars S_k in $O(k^2 l)$
 - induced l stars S_k on a common path in O(kl)
- m-Eternal domination problem
 - upper bound for cactus graphs
 - solution for christmas cactus graphs
- Edge-length ratio of 2-trees
 - edge-length ratio of 2-trees is unbounded
 - local edge-length ratio of 2-trees has upper bound $(4 + \epsilon)$

(some other notions and future work is next)

Complexity of combinatorial games

In general, combinatorial games are quite hard, game with x rounds can be thought of as searching for solution in

 $(\exists A_1)(\forall B_1)(\exists A_2)(\forall B_2)\dots(\exists A_x)$ such that there is no move.

It was noted by Fraenkel et al. that the game tends to be PSPACE-complete if it has bounded number of quantifiers, and if it is unbounded it is usually EXPTIME-complete.

- The complexity classes for combinatorial games were proposed but are not widely used.
- These classes seem to have no complete problems yet.

Algorithmic game theory

- Perfect information
- Playing simultaneously
- Each agent (player) maximizes his payoff

A choice where all agents cannot change their choice to make their payoff better, is called *Nash equilibrium*.

We can use *mechanism design* to tackle some problems.

- Design payoffs in a way such that all the Nash equilibria yield a solution to some problem.
- Prove that a Nash equilibrium can be found quickly.

Proposed doctoral thesis

Title of the thesis: Combinatorial and Algorithmic Game Theory

We suggest to focus on the following:

- Find solutions to combinatorial games,
- investigate their complexity and gather evidence of notions which might be used to categorize combinatorial games into (potentially new) complexity classes,
- design algorithmic games where the result corresponds to a globally desirable outcome, mainly (but not only) for combinatorial optimization problems,
- investigate its algorithmic and computational complexity aspects, investigate common phenomena of the original problems and their game theoretical formulations.