Complexity of Games on Graphs

Václav Blažej

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague
supervisor: doc. RNDr. Tomáš Valla, Ph.D.
29. September 2022

Complexity of Games on Graphs

a graph consists of vertices and edges

Complexity of Games on Graphs

- 2 players
- complete information
- no randomness
- play optimally

source: Wikimedia commons

Computational Complexity of Games on Graphs

Tractable: algorithm running in polynomial time (class P)

Intractable: under common assumptions, there is no algorithm that runs in polynomial time (class NP-hard)

Contents of the thesis

(1) m-Eternal domination
with Jan Matyáš Křistan, and Tomáš Valla; in Reachability Problems - 13th International Conference, RP 2019
(2) Hat Chromatic Number with Pavel Dvorák, and Michal Opler; in Graph-Theoretic Concepts in Computer Science - 47th International Workshop, WG 2021
(3) Online Ramsey Number with Pavel Dvořák, and Tomáš Valla; in Computer Science Theory and Applications - 14th International Computer Science Symposium in Russia, CSR 2019
(4) Group Identification
with Dušan Knop, and Šimon Schierreich; in Computer Science

- Theory and Applications - 36th Conference on Artificial Intelligence, AAAI 2022, (student abstract, to appear).

Game setting

Given a graph G, you place k guards on its vertices.

Now, we perform 1 turn:
(1) I will attack a vertex.
(2) You may move each guard along at most one edge.
(3) You defended my attack if a guard stands on the attacked vertex.

You win if you successfully defend.
I win if you did not defend.

Game setting

Given a graph G, you place k guards on its vertices.

Now, we perform 1 turn:
(1) I will attack a vertex.
(2) You may move each guard along at most one edge.
(3) You defended my attack if a guard stands on the attacked vertex.

You win if you successfully defend
I win if you did not defend.

Game setting

Given a graph G, you place k guards on its vertices.

Now, we perform 1 turn:
(1) I will attack a vertex.
(2) You may move each guard along at most one edge.
(3) You defended my attack if a guard stands on the attacked vertex.

You win if you successfully defend
I win if you did not defend.

Game setting

Given a graph G, you place k guards on its vertices.

Now, we perform 1 turn:
(1) I will attack a vertex.
(2) You may move each guard along at most one edge.
(3) You defended my attack if a guard stands on the attacked vertex.

You win if you successfully defend.
I win if you did not defend.

Game setting

Given a graph G, you place k guards on its vertices.

Now, we perform 1 turn:
(1) I will attack a vertex.
(2) You may move each guard along at most one edge.
(3) You defended my attack if a guard stands on the attacked vertex.

You win if you successfully
defend.
I win if you did not defend.

Game setting

Given a graph G, you place k guards on its vertices.

Now, we perform 1 turn:
(1) I will attack a vertex.
(2) You may move each guard along at most one edge.
(3) You defended my attack if a guard stands on the attacked vertex.

You win if you successfully defend.
I win if you did not defend.

Dominating set

is dominating set

is not dominating set

Game with 1 turn \approx Dom. number

I pick a vertex and you have to defend it (step on it) by moving each guard along at most one edge.

Dominating set

Set of guards $D \subseteq V(G)$ such that each vertex of the graph G either is in D or in its neighborhood.

Domination number
Smallest possible size of the set D

Dominating set

is dominating set

is not dominating set

Game with 1 turn \approx Dom. number

I pick a vertex and you have to defend it (step on it) by moving each guard along at most one edge.

Dominating set

Set of guards $D \subseteq V(G)$ such that each vertex of the graph G either is in D or in its neighborhood.

Domination number

Smallest possible size of the set D

Dominating set

Game with 1 turn \approx Dom. number

I pick a vertex and you have to defend it (step on it) by moving each guard along at most one edge.

Dominating set

Set of guards $D \subseteq V(G)$ such that each vertex of the graph G either is in D or in its neighborhood.

Domination number

Smallest possible size of the set D.

Dominating set

Game with 1 turn \approx Dom. number

I pick a vertex and you have to defend it (step on it) by moving each guard along at most one edge.

Dominating set

Set of guards $D \subseteq V(G)$ such that each vertex of the graph G either is in D or in its neighborhood.

Domination number

Smallest possible size of the set D.

Eternal Domination Number

Game of Domination
 I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

Game of Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

Game of Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

dominating set

eternal domiation configurations

Game of Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

Game of Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

Game of Domination

I pick a vertex and you have to defend it
 by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

Game of Domination

\mid dominating set $\left\lvert\,=\left\lceil\frac{n}{3}\right\rceil\right.$

I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

Game of Domination

\mid dominating set $\left\lvert\,=\left\lceil\frac{n}{3}\right\rceil\right.$

I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

Game of Domination

\mid dominating set $\left\lvert\,=\left\lceil\frac{n}{3}\right\rceil\right.$

I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

Game of Domination

\mid dominating set $\left\lvert\,=\left\lceil\frac{n}{3}\right\rceil\right.$

I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Eternal Domination Number

Game of Domination

dominating set $\left\lvert\,=\left\lceil\frac{n}{3}\right\rceil\right.$

\mid eternal dom. set $\left\lvert\,=\left\lceil\frac{n}{2}\right\rceil\right.$

I pick a vertex and you have to defend it by moving each guard along at most one edge.

Game of Eternal Domination

I pick a vertex and you have to defend it by moving each guard along at most one edge, for an infinite number of turns.

What is the minimum number of guards you need to eternally defend the graph against an arbitrary sequence of attacks.

Relation to Domination number

domination \leq eternal domination $\leq 2 \times$ domination

domination \leq eternal domination every configuration must form a dominating set

eternal domination $\leq 2 \times$ dom.

we can defend neighborhood of each vertex of the dominating set by a star-defending strategy

Relation to Domination number

domination \leq eternal domination $\leq 2 \times$ domination

domination \leq eternal domination every configuration must form a dominating set

eternal domination $\leq 2 \times$ dom.

 we can defend neighborhood of each vertex of the dominating set by a star-defending strategy
Defending trees

Defending trees

Defending trees

Defending trees

Defending trees

Reduction	Lower bound	Upper bound
t_{1}		
t_{2}	$u \cdot \iota^{-0} \text { } \omega_{0}^{v}$	
t_{3}		

Defending trees

Decision variant of the problem

m-Eternal Domination - decision variant:

Input: Graph G, integer k
Output: Can k guards defend G against any sequence of attacks?

- Known to be NP-hard,
- lies in EXDTIMAE
- unknown whether it lies in PSPACE.

We denote the minimum k which results in yes instance as $\gamma_{\mathrm{m}}^{\infty}(G)$

Decision variant of the problem

m-Eternal Domination - decision variant:

Input: Graph G, integer k
Output: Can k guards defend G against any sequence of attacks?

- Known to be NP-hard,
- lies in EXPTIME,
- unknown whether it lies in PSPACE.

We denote the minimum k which results in yes instance as $\gamma_{\mathrm{m}}^{\infty}(G)$.

Decision variant of the problem

m-Eternal Domination - decision variant:

Input: Graph G, integer k
Output: Can k guards defend G against any sequence of attacks?

- Known to be NP-hard,
- lies in EXPTIME,
- unknown whether it lies in PSPACE.

We denote the minimum k which results in yes instance as $\gamma_{\mathrm{m}}^{\infty}(G)$.

Decision variant of the problem

m-Eternal Domination - decision variant:

Input: Graph G, integer k
Output: Can k guards defend G against any sequence of attacks?

- Known to be NP-hard,
- lies in EXPTIME,
- unknown whether it lies in PSPACE.

We denote the minimum k which results in yes instance as $\gamma_{\mathrm{m}}^{\infty}(G)$.

Decision variant of the problem

m-Eternal Domination - decision variant:

Input: Graph G, integer k
Output: Can k guards defend G against any sequence of attacks?

- Known to be NP-hard,
- lies in EXPTIME,
- unknown whether it lies in PSPACE.

We denote the minimum k which results in yes instance as $\gamma_{\mathrm{m}}^{\infty}(G)$.

Cactus graphs

Definition

Graph is cactus graph when every edge belongs to at most one cycle.

Cactus graphs are characterized by one forbidden minor: $\left(K_{4} \backslash e\right)$

Theorem (B., Kristian, Valla)

Let G be a cactus graph. Then
there exists a polynomial
algorithm which computes the
minimum required number of
guards to eternally defend G.

Cactus graphs

Definition

Graph is cactus graph when every edge belongs to at most one cycle.

Cactus graphs are characterized by one forbidden minor: $\left(K_{4} \backslash e\right)$.

> Theorem (B., Křištan, Valla)
> Let G be a cactus graph. Then
> there exists a polynomial
> algorithm which computes the
> minimum required number of

guards to eternally defend G.

Cactus graphs

Definition

Graph is cactus graph when every edge belongs to at most one cycle.

Cactus graphs are characterized by one forbidden minor: $\left(K_{4} \backslash e\right)$.

Theorem (B., Křišťan, Valla)

Let G be a cactus graph. Then there exists a polynomial algorithm which computes the minimum required number of guards to eternally defend G.

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

Reducing a cactus

1) reduce leaf trees, 2) shorten leaf cycles, 3) reduce cycles

We have a polynomial algorithm that finds $\gamma_{\mathrm{m}}^{\infty}$ of any cactus graph.

Hat Chromatic Number

Players

Bears play against an evil Demon.
The game proceeds as:
(1) Demon presents a graph G and number of colors k
(2. Bears can agree on a strategy. Then bears can no longer talk and are put on vertices of the graph.
(3) Demon puts a colored hat on each bear's head.
(4) All bears at once guess their hat colors based only on hat's colors of their neighbors.
(5) Bears win if at least one bear guesses correctly.

Players

Bears play against an evil Demon.
The game proceeds as:
(1) Demon presents a graph G and number of colors k.

Iㅗㅇㅛ
(2) Bears can agree on a strategy. Then bears can no longer talk and are put on vertices of the graph.
(3) Demon puts a colored hat on each bear's head.
a All bears at once guess their hat colors based only on hat's colors of their neighbors.
(5) Bears win if at least one bear guesses correctly.

Players

Bears play against an evil Demon.
The game proceeds as:
(1) Demon presents a graph G and number of colors k.
(2) Bears can agree on a strategy. Then bears can no longer talk and are put on vertices of the graph.
(3) Demon puts a colored hat on each bear's head
a All bears at once guess their hat colors based only on hat's colors of their neighbors.
(5) Rears win if at least one bear guesses correctly

Players

Bears play against an evil Demon.
The game proceeds as:
(1) Demon presents a graph G and number of colors k.
(2) Bears can agree on a strategy. Then bears can no longer talk and are put on vertices of the graph.
(3) Demon puts a colored hat on each bear's head.
(4) All bears at once guess their hat colors based only on hat's colors of their neighbors.

Players

Bears play against an evil Demon.
The game proceeds as:
(1) Demon presents a graph G and number of colors k.
(2) Bears can agree on a strategy. Then bears can no longer talk and are put on vertices of the graph.
(3) Demon puts a colored hat on each bear's head.
(4) All bears at once guess their hat colors based only on hat's colors of their neighbors.
(5) Bears win if at least one bear guesses correctly.

Players

Bears play against an evil Demon.
The game proceeds as:
(1) Demon presents a graph G and number of colors k.
(2) Bears can agree on a strategy. Then bears can no longer talk and are put on vertices of the graph.
(3) Demon puts a colored hat on each bear's head.
(4) All bears at once guess their hat colors based only on hat's colors of their neighbors.
(5) Bears win if at least one bear guesses correctly.

Generalizations

- restrict visibility
possibly different number of hats for each bear
- allow multiple guesses

Generalizations

- restrict visibility
- possibly different number of hats for each bear

Generalizations

- restrict visibility
- possibly different number of hats for each bear
- allow multiple guesses

Fractional Hat Chromatic Number

A hat chromatic number $\mu(G)$ of a graph G is the maximum number of colors for which bears win.

Definition
A fractional hat chromatic number $\hat{\mu}(G)$ is

- $\mu\left(K_{n}\right)=n$, i.e., bears win if
\square
- bears win on I_{n} if \sum

heorem

Bears win a game $\left(K_{n}=(V, E), \mathrm{h}, \mathrm{g}\right)$
\square

Fractional Hat Chromatic Number

A hat chromatic number $\mu(G)$ of a graph G is the maximum number of colors for which bears win.

Definition

A fractional hat chromatic number $\hat{\mu}(G)$ is

$$
\hat{\mu}(G)=\sup \{h / g \mid \text { bears win with } h \text { colors and } g \text { guesses }\}
$$

Fractional Hat Chromatic Number

A hat chromatic number $\mu(G)$ of a graph G is the maximum number of colors for which bears win.

Definition

A fractional hat chromatic number $\hat{\mu}(G)$ is

$$
\hat{\mu}(G)=\sup \{h / g \mid \text { bears win with } h \text { colors and } g \text { guesses }\}
$$

- $\mu\left(K_{n}\right)=n$, i.e., bears win if

$$
\sum_{v \in V} \frac{1}{h} \geq 1
$$

Fractional Hat Chromatic Number

A hat chromatic number $\mu(G)$ of a graph G is the maximum number of colors for which bears win.

Definition

A fractional hat chromatic number $\hat{\mu}(G)$ is

$$
\hat{\mu}(G)=\sup \{h / g \mid \text { bears win with } h \text { colors and } g \text { guesses }\}
$$

- $\mu\left(K_{n}\right)=n$, i.e., bears win if $\sum_{v \in V} \frac{1}{h} \geq 1$
- bears win on K_{n} if $\sum_{v \in V} \frac{1}{h_{v}} \geq 1$

Fractional Hat Chromatic Number

A hat chromatic number $\mu(G)$ of a graph G is the maximum number of colors for which bears win.

Definition

A fractional hat chromatic number $\hat{\mu}(G)$ is

$$
\hat{\mu}(G)=\sup \{h / g \mid \text { bears win with } h \text { colors and } g \text { guesses }\}
$$

- $\mu\left(K_{n}\right)=n$, i.e., bears win if

$$
\sum_{v \in V} \frac{1}{h} \geq 1
$$

- bears win on K_{n} if $\sum_{v \in V} \frac{1}{h_{v}} \geq 1$

Theorem

Bears win a game $\left(K_{n}=(V, E), \mathbf{h}, \mathbf{g}\right)$

General case - a connection to Independent sets

How many different colorings can a vertex u guess correctly?

fixed colors
He guesses correctly in exactly $\frac{g_{u}}{h_{u}}$ fraction of all colorings.
Trying to count the number of such colorings naturally leads to the independence polynomial.

General case - a connection to Independent sets

How many different colorings can a vertex u guess correctly?

fixed colors
He guesses correctly in exactly $\frac{g_{u}}{h_{u}}$ fraction of all colorings.
Trying to count the number of such colorings naturally leads to the independence polynomial.

General case - a connection to Independent sets

How many different colorings can a vertex u guess correctly?

fixed colors
He guesses correctly in exactly $\frac{g_{u}}{h_{u}}$ fraction of all colorings.
Trying to count the number of such colorings naturally leads to the independence polynomial.

General case - a connection to Independent sets

General case - a connection to Independent sets

Independence polynomial: $3 x^{2}+5 x$

$$
=5 \cdot \frac{1}{3}-3 \cdot\left(\frac{1}{3}\right)^{2}
$$

Perfect strategies

Definition

A strategy for a hat guessing game is perfect if it is winning and in every hat arrangement, no two bears that guess correctly are on adjacent vertices.

Chordal graphs and their decomposition

Definition

A clique tree of a graph G is a tree T whose vertex set is precisely the subsets of V that induce maximal cliques in G and for each $v \in V$ the vertices of T containing v induces a connected subtree.

Fact

G is chordal if and only if it possesses a clique tree.

Chordal graphs and their decomposition

Definition

A clique tree of a graph G is a tree T whose vertex set is precisely the subsets of V that induce maximal cliques in G and for each $v \in V$ the vertices of T containing v induces a connected subtree.

Fact

G is chordal if and only if it possesses a clique tree.

Clique join - an operation that builds chordal graphs

Definition (Clique join)

Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be graphs, $S \subseteq V_{1}$ a clique in G_{1} and $v \in V_{2}$. The clique join of G_{1} and G_{2} with respect to S and v is the graph G :

Theorem

There is an algorithm that computes an optimal strategy of bears of an arbitrary chordal graph in polynomial time.

Theorem

There is an algorithm that computes an optimal strategy of bears of an arbitrary chordal graph in polynomial time.

Contribution of the thesis

(1) m-Eternal domination

- provided a toolbox for obtaining bounds on solution size
- polynomial algorithm for cactus graphs
(2) Hat Chromatic Number
- introduced a fractional generalization of the parameter
- connected it to graph independence polynomial
- designed a polynomial algorithm for chordal graphs
(3) Online Ramsey Number
- introduced a concept of Induced online Ramsey numbers
- showed asymptotically tight constructions and showed an asymptotic gap from its non-game counterpart for trees
(4) Group Identification
- analyzed complexity of 2-player variant of the problem
- provided a complete parameterized complexity picture

Contribution of the thesis

(1) m-Eternal domination

- provided a toolbox for obtaining bounds on solution size
- polynomial algorithm for cactus graphs
(2) Hat Chromatic Number
- introduced a fractional generalization of the parameter
- connected it to graph independence polynomial
- designed a polynomial algorithm for chordal graphs
(3) Online Ramsey Number
- introduced a concept of Induced online Ramsey numbers
- showed asymptotically tight constructions and showed an asymptotic gap from its non-game counterpart for trees

4 Group Identification

- analyzed complexity of 2-player variant of the problem
- provided a complete parameterized complexity picture

Thank you for your attention!

Question 1

The result about the asymptotic gap between size-Ramsey numbers and online Ramsey numbers is similar to the result of Conlon, which is about complete graphs and was proved using pseudo-random graphs.
Did you consider using these techniques for other graphs besides the complete graphs? Do they apply for trees as well? Can you compare your techniques and the ones used by Conlon?

Comment

It is not clear how one would apply this method to non-complete graphs. We aimed for a constructive result.

Question 2

You found an algorithm for determining the m-eternal domination number of cactus graphs. Can you say something about the growth rate of these numbers with respect to the number of vertices?

Comment

Stars are guarded by 2 guards, paths with $\frac{n}{2}$, and cycles with $\frac{n}{3}$ guards and n guards always suffice.
Our reductions on cactus graphs give the following ratios (guards/vertices): $\frac{0}{1}, \frac{1}{3}, \frac{2}{5}, \frac{3}{7}$, and $\frac{1}{2}$
\Longrightarrow Cactus graphs can always be defended with $\frac{n}{2}+1$ guards.

Question 1

What are the difficulties in generalizing the results for eternal domination to graphs of treewidth at most 2?

Comment

- Graph with treewidth 2 have a nice decomposition using cuts of size 2 , but they may contain many interlocking cycles.
- Complex cycles structure increase intricacy of the problem significantly.
- Partial results may be obtained by assumptions on the structure of the solution.

