A Simple Streaming Bit-parallel Algorithm for Swap Pattern Matching

Václav Blažej (joint work with Ondřej Suchý and Tomáš Valla)

Faculty of Information Technology Czech Technical University in Prague

November 15, 2017

In computer science, **pattern matching** is the act of checking a given **sequence** of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact. The patterns generally have the form of either sequences or tree structures. Uses of pattern matching include outputting the locations (if any) of a pattern within a token sequence, to output some component of the matched pattern, and to substitute the matching pattern with some other token sequence (i.e., search and replace).

▲ □ ▶ ▲ □ ▶ ▲

In comouter science, **Dattern matching** is the act of checking a given **sequence** of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact. The patterns generally have the form of either sequences or tree structures. Uses of pattern matching include outputting the locations (if any) of a pattern within a token sequence, to output some component of the matched pattern, and to substitute the matching pattern with some other token sequence (i.e., search and replace).

▲ □ ▶ ▲ □ ▶ ▲

In computer science, pattern matching is the act of checking a given sequence of tokens for the presence of the constituents of some pattern. In contrast to pattern recognition, the match usually has to be exact. The patterns generally have the form of either sequences or tree structures. Uses of pattern matching include outputting the locations (if any) of a pattern within a token sequence, to output some component of the matched pattern, and to substitute the matching pattern with some other token sequence (i.e., search and replace).

▲□ ► < □ ► </p>

In computer science, **pattern matching** is the act of checking a given **sequence** of tokens for the presence of the constituents of some **pattern**. In contrast to **pattern** recognition, the match usually has to be exact. The **pattern**'s generally have the form of either sequences or tree structures. Uses of **pattern** matching include outputting the locations (if any) of a **pattern** within a token sequence, to output some component of the matched **pattern**, and to substitute the matching **pattern** with some other token sequence (i.e., search and replace).

- 4 同 🕨 - 4 目 🕨 - 4 目

What is sawp pattren matchnig?

-

What is sawp pattren matchnig? Did you mean: "What is swap pattern matching?" ?

What is sawp pattren matchnig?

Did you mean: "What is swap pattern matching?" ?

what is sawp pattren matchnig?

Including results for what is swap pattern matching?.

Search only for what is "sawp" "pattren" "matchnig?"?

What is sawp pattren matchnig?

Did you mean: "What is swap pattern matching?" ?

what is sawp pattren matchnig?

Including results for what is swap pattern matching?. Search only for what is "sawp" "pattren" "matchnig?"?

 \times we are allowed to swap adjacent symbols

We search for occurrences of patterns in the text while allowing pattern to swap adjacent symbols. We define swaps $\pi : \{1 \dots n\} \rightarrow \{1 \dots n\}$ in the pattern S such that:

Definition of Swap Matching problem

We search for occurrences of patterns in the text while allowing pattern to swap adjacent symbols.

We define swaps $\pi : \{1 \dots n\} \to \{1 \dots n\}$ in the pattern S such that:

1 when $\pi(i) = j$ then $\pi(j) = i$ (symbols S_i , S_j are swapped),

We search for occurrences of patterns in the text while allowing pattern to swap adjacent symbols.

We define swaps $\pi:\{1\dots n\}\to \{1\dots n\}$ in the pattern S such that:

- 1) when $\pi(i) = j$ then $\pi(j) = i$ (symbols S_i , S_j are swapped),
- 2 for all $i, \pi(i) \in \{i 1, i, i + 1\}$ (swap only adjacent symbols),

We search for occurrences of patterns in the text while allowing pattern to swap adjacent symbols.

We define swaps $\pi:\{1\dots n\}\to \{1\dots n\}$ in the pattern S such that:

- **1** when $\pi(i) = j$ then $\pi(j) = i$ (symbols S_i , S_j are swapped),
- 2 for all $i, \pi(i) \in \{i 1, i, i + 1\}$ (swap only adjacent symbols),
- **3** when $\pi(i) \neq i$ then $S_{\pi(i)} \neq S_i$ (cannot swap same symbols).

We search for occurrences of patterns in the text while allowing pattern to swap adjacent symbols.

We define swaps $\pi:\{1\dots n\}\to \{1\dots n\}$ in the pattern S such that:

- **1** when $\pi(i) = j$ then $\pi(j) = i$ (symbols S_i , S_j are swapped),
- 2 for all $i, \pi(i) \in \{i 1, i, i + 1\}$ (swap only adjacent symbols),
- **3** when $\pi(i) \neq i$ then $S_{\pi(i)} \neq S_i$ (cannot swap same symbols).

acbabcabbab |||||||| acbab

We search for occurrences of patterns in the text while allowing pattern to swap adjacent symbols.

We define swaps $\pi:\{1\dots n\}\to \{1\dots n\}$ in the pattern S such that:

- **1** when $\pi(i) = j$ then $\pi(j) = i$ (symbols S_i , S_j are swapped),
- 2 for all $i, \pi(i) \in \{i 1, i, i + 1\}$ (swap only adjacent symbols),
- **3** when $\pi(i) \neq i$ then $S_{\pi(i)} \neq S_i$ (cannot swap same symbols).

We search for occurrences of patterns in the text while allowing pattern to swap adjacent symbols.

We define swaps $\pi:\{1\dots n\}\to \{1\dots n\}$ in the pattern S such that:

- **1** when $\pi(i) = j$ then $\pi(j) = i$ (symbols S_i , S_j are swapped),
- 2 for all $i, \pi(i) \in \{i 1, i, i + 1\}$ (swap only adjacent symbols),
- **3** when $\pi(i) \neq i$ then $S_{\pi(i)} \neq S_i$ (cannot swap same symbols).

ac<mark>babc</mark>abbab

Swap Matching example

Search for abba in text abbabaaababbbaaabbbbaab:

Figure: found occurrences of abba in the text

History

- 1995 Swap Matching problem was announced as open problem [Muthukrishnan, CPM 95]
- 1997 first solution using FFT, $O(nm^{\frac{1}{2}}\log m)$ [Amir et al., J. Algorithms]
- 2008 first non-FFT algorithm, using bit-parallelism [Iliopoulos and Rahman, SOFSEM 2008] $O((n+m)\log m)$
- 2009 Cross Sampling algorithm which solves the problem in O(n) for short patterns [Cantone and Faro, SOFSEM 2009]
- 2013 new model using reactive automata and solution with O(n) complexity for short patterns [Faro, PSC 2013]
- 2014 Smalgo-I algorithm, uses bit-parallelism [Ahmed et al., Theor. Comput. Sci.] $O(\frac{m}{w}n)$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

History

- 1995 Swap Matching problem was announced as open problem [Muthukrishnan, CPM 95]
- 1997 first solution using FFT, $O(nm^{\frac{1}{2}}\log m)$ [Amir et al., J. Algorithms]
- 2008 first non-FFT algorithm, using bit-parallelism [Iliopoulos and Rahman, SOFSEM 2008] FATAL ERROR
- 2009 Cross Sampling algorithm which solves the problem in O(n) for short patterns [Cantone and Faro, SOFSEM 2009]
- 2013 new model using reactive automata and solution with O(n) complexity for short patterns [Faro, PSC 2013]
- 2014 Smalgo-I algorithm, uses bit-parallelism [Ahmed et al., Theor. Comput. Sci.] FATAL ERROR

・ 同 ト ・ ヨ ト ・ ヨ

Model Our algorithm Unsolvable with DFA

The Model [Iliopoulos and Rahman, SOFSEM 2008]

• Graph represents all patterns which are feasible.

Model Our algorithm Unsolvable with DFA

The Model [Iliopoulos and Rahman, SOFSEM 2008]

- Graph represents all patterns which are feasible.
- Each path from first to last column is one such pattern.

Model Our algorithm Unsolvable with DFA

The Model [Iliopoulos and Rahman, SOFSEM 2008]

- Graph represents all patterns which are feasible.
- Each path from first to last column is one such pattern.

Model Our algorithm Unsolvable with DFA

The Model [Iliopoulos and Rahman, SOFSEM 2008]

- Graph represents all patterns which are feasible.
- Each path from first to last column is one such pattern.

Model Our algorithm Unsolvable with DFA

The Model [Iliopoulos and Rahman, SOFSEM 2008]

- Graph represents all patterns which are feasible.
- Each path from first to last column is one such pattern.
- The *signal* is information that a path partially matches.

We designed a new algorithm for the swap matching problem

- ∢ ≣ ▶

We designed a new algorithm for the swap matching problem

• uses the graph theoretical model,

- ∢ ≣ ▶

We designed a new algorithm for the swap matching problem

- uses the graph theoretical model,
- takes input as stream of symbols,

We designed a new algorithm for the swap matching problem

- uses the graph theoretical model,
- takes input as stream of symbols,
- bitwise parallelism of machine instructions,

We designed a new algorithm for the swap matching problem

- uses the graph theoretical model,
- takes input as stream of symbols,
- bitwise parallelism of machine instructions,
- can be implemented using only $7 + |\Sigma|$ memory cells.

We use the bitwise representation and operations to simulate signal propagation through the model.

- Represent each row with bit array.
- Use *shift* and *or* to move signal.
- Use *and* to filter our signal.

Figure: Example run for P = acbab and T = acabab

We use the bitwise representation and operations to simulate signal propagation through the model.

- Represent each row with bit array.
- Use *shift* and *or* to move signal.
- Use *and* to filter our signal.

Figure: Example run for P = acbab and $T = \underline{a}cabab$

We use the bitwise representation and operations to simulate signal propagation through the model.

- Represent each row with bit array.
- Use *shift* and *or* to move signal.
- Use *and* to filter our signal.

Figure: Example run for P = acbab and $T = \underline{ac}abab$

We use the bitwise representation and operations to simulate signal propagation through the model.

- Represent each row with bit array.
- Use *shift* and *or* to move signal.
- Use *and* to filter our signal.

Figure: Example run for P = acbab and $T = \underline{aca}bab$

We use the bitwise representation and operations to simulate signal propagation through the model.

- Represent each row with bit array.
- Use *shift* and *or* to move signal.
- Use *and* to filter our signal.

Figure: Example run for P = acbab and $T = \underline{acab}ab$

We use the bitwise representation and operations to simulate signal propagation through the model.

- Represent each row with bit array.
- Use *shift* and *or* to move signal.
- Use *and* to filter our signal.

Figure: Example run for P = acbab and $T = \underline{acaba}b$

We use the bitwise representation and operations to simulate signal propagation through the model.

- Represent each row with bit array.
- Use *shift* and *or* to move signal.
- Use *and* to filter our signal.

Figure: Example run for P = acbab and $T = \underline{acabab}$

Step 1 - signal propagation - using shift and or operation

Step $1-\mbox{signal}$ propagation – using shift and or operation

- for row 0 shift and make ${\it or}$ of rows -1 and 0

Step 1 - signal propagation - using shift and or operation

- for row 0 shift and make *or* of rows -1 and 0
- for row 1 shift and make or of rows -1 and 0

Step 1 - signal propagation - using shift and or operation

- for row 0 shift and make or of rows -1 and 0
- for row 1 shift and make $\operatorname{\textit{or}}$ of rows -1 and 0
- for row -1 shift and add row 1

Step 2 - signal filtration - using and operation

Step 2 – signal filtration – using and operation

• get mask for currently read symbol (say a)

Step 2 - signal filtration - using and operation

- get mask for currently read symbol (say a)
- make and operation so that invalid signals are filtered out

Step 2 – signal filtration – using and operation

- get mask for currently read symbol (say a)
- make and operation so that invalid signals are filtered out

Step 3 - check result

э

3

э

Step 3 - check result

• check if there is a signal in the last column

Properties of our algorithm

For pattern of length $m,\,{\rm text}\;n$ and word size w (using the word-Ram model) we have

• time complexity

$$O(\lceil \frac{m}{w} \rceil(|\Sigma| + n) + m),$$

Properties of our algorithm

For pattern of length $m,\,{\rm text}\;n$ and word size w (using the word-Ram model) we have

• time complexity

$$O(\lceil \frac{m}{w} \rceil(|\Sigma| + n) + m),$$

space complexity

$$O(\lceil \frac{m}{w} \rceil |\Sigma|).$$

Properties of our algorithm

For pattern of length $m,\,{\rm text}\;n$ and word size w (using the word-Ram model) we have

• time complexity

$$O(\lceil \frac{m}{w} \rceil (|\Sigma| + n) + m),$$

space complexity

$$O(\lceil \frac{m}{w}\rceil |\Sigma|).$$

• If $m \le w$ we get $O(|\Sigma| + m + n)$ time and $O(|\Sigma|)$ space.

Question: Is Swap Matching problem solvable with DFA?

Question: Is Swap Matching problem solvable with DFA?

• Use the model to create non-deterministic automaton.

Question: Is Swap Matching problem solvable with DFA?

• Use the model to create non-deterministic automaton.

Question: Is Swap Matching problem solvable with DFA?

- Use the model to create non-deterministic automaton.
- Determinize the automaton.

Question: Is Swap Matching problem solvable with DFA?

- Use the model to create non-deterministic automaton.
- Determinize the automaton.
- Any time it reaches final state it reports an occurrence and continues reading input.

Question: Is Swap Matching problem solvable with a small DFA?

Question: Is Swap Matching problem solvable with a small DFA?

Theorem

There is an infinite family F of patterns such that any deterministic finite automaton A_P accepting the language $L_S(P) = \{u\pi(P) \mid u \in \Sigma^*, \pi \text{ is a swap permutation for } P\}$ for $P \in F$ has $2^{\Omega(|P|)}$ states.

Theorem

There is an infinite family F of patterns such that any deterministic finite automaton A_P accepting the language $L_S(P) = \{u\pi(P) \mid u \in \Sigma^*, \pi \text{ is a swap permutation for } P\}$ for $P \in F$ has $2^{\Omega(|P|)}$ states.

Length if these patterns is |4+5k| a $k \in \{1, 2, \dots\}$.

$P = T_0$	acccabcccabccc
T_1	acccbacccabccc
T_2	acccabcccbaccc
T_3	acccbacccbaccc

Table: All strings for k = 2.

Theorem

There is an infinite family F of patterns such that any deterministic finite automaton A_P accepting the language $L_S(P) = \{u\pi(P) \mid u \in \Sigma^*, \pi \text{ is a swap permutation for } P\}$ for $P \in F$ has $2^{\Omega(|P|)}$ states.

Length if these patterns is |4+5k| a $k \in \{1, 2, \dots\}$.

$P = T_0$	acccabcccabccc
T_1	acccbacccabccc
T_2	acccabcccbaccc
T_3	acccbacccbaccc

Table: All strings for k = 2.

If the automaton is in the same state after reading strings T_i, T_j such that $T_i \neq T_j$, then there exists such a suffix S such that $T_i.S \in A$ and $T_j.S \notin A$.

Our results:

- new algorithm for Swap Matching
 - uses the graph theoretical model
 - takes input as stream
 - bitwise parallelism
 - can be implemented in few registers

Our results:

- new algorithm for Swap Matching
 - uses the graph theoretical model
 - takes input as stream
 - bitwise parallelism
 - can be implemented in few registers
- found an error in known swap matching algorithm

Our results:

- new algorithm for Swap Matching
 - uses the graph theoretical model
 - takes input as stream
 - bitwise parallelism
 - can be implemented in few registers
- found an error in known swap matching algorithm
- proved that Swap Matching is not solvable in poly-time with deterministic finite automata

Our results:

- new algorithm for Swap Matching
 - uses the graph theoretical model
 - takes input as stream
 - bitwise parallelism
 - can be implemented in few registers
- found an error in known swap matching algorithm
- proved that Swap Matching is not solvable in poly-time with deterministic finite automata

Open problem: Considering some computational model, is Swap Matching problem solvable in linear time? If not prove there is no effective solution.

Our results:

- new algorithm for Swap Matching
 - uses the graph theoretical model
 - takes input as stream
 - bitwise parallelism
 - can be implemented in few registers
- found an error in known swap matching algorithm
- proved that Swap Matching is not solvable in poly-time with deterministic finite automata

Open problem: Considering some computational model, is Swap Matching problem solvable in linear time? If not prove there is no effective solution.

Thank you for your attention!