POLYNOMIAL KERNELS FOR TRAVELING SALESPERSON

Václav Blažej, Pratibha Choudhary, Dušan Knop, Šimon Schierreich, Ondřej Suchý, and Tomáš Valla Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic

Traveling Salesperson Problem (TSP)

- **Input:** Simple weighted undirected graph $G = (V, E, \omega)$, where $\omega: E \to \mathbb{N}$ and a **budget** $B \in \mathbb{N}$.
- **Output:** Is there a **closed walk** *R* that visits all vertices and has the total weight at most B?
- TSP is an NP-hard problem
- it is **FPT** with respect to treewidth

Feedback Edge Set No. Vertex Cover Number **Our results** • vertices outside of the vertex cover • leaves always have a clear solution M have a cheapest way to connect • chains of degree 2 vertices have the to Mnumber of possibilities small and Vertex Cover Number Feedback Edge Set No. can be modelled with smaller sub-Remove k vertices to obtain Remove k edges so that M = vertex covergraphs an independent set. no cycles are left. • similar reductions also work for TSP has $\mathcal{O}(k^{16})$ kernel. the generalized TSP (see box at the bottom) • exhaustive application gives a Mod. to Const. Paths polynomial kernel Remove k vertices to obtain contant-length paths connect u with v using a total weight 2 kernel from \downarrow result **Negative results** • connecting all vertices in the cheapest way may not give a connected solution • no polynomial kernel for TSP Mod. to Const. Comps. "pay" an additional fee to some

pay 1 or **pay 3** to connect w with v

- retain M and a polynomial number of such vertices for each (v, w)pair
- \rightarrow polynomial kernel

